

A Method for Vaccine Effectiveness Surveillance with Application to the BA.1 and BA.2 sub-lineages of the Omicron Variant

Taylor Fortnam¹, Laura Chambers^{1,2}, Alyssa Bilinski¹, Ewa King², Ellen Amore², Lisa Gargano², James McDonald², Philip A. Chan^{1,2}, Richard Huard², Joseph W. Hogan¹ ¹Brown University, RI, ²Rhode Island Department of Health

Overview

We propose a surveillance method for updating estimates of vaccine effectiveness (VE) against infection with an emerging COVID-19 variant using dynamic case-control sampling. The method uses routinely-collected genomic surveillance data and leverages published VE estimates against a previous variant to produce a stable estimate of VE without some of the limitations by other designs.

Background

- New COVID-19 variants arise frequently with different viral properties that can impact the effectiveness of existing vaccines.
- Public health officials must rapidly assess VE against new variants so that they can adjust mitigation measures.
- In vitro estimates of VE can be produced quickly but don't map directly to specific health outcomes.
- Obtaining reliable estimates of VE in vivo often involves conducting a prospective cohort or test-negative case-control study, both of which require large sample sizes and substantial time for cases to accumulate.
- Genomic sequencing is costly and typically only available for a subsample of positive cases.

Data

- SARS-CoV-2 positive specimens linked with vaccination registry.
- Associated demographic information for cases (age, sex, race, congregate care status, and zip-code based community risk classification).
- Only utilize first diagnosed infections in analysis.
- Data are collected and provided by the Rhode Island Department of Health (RIDOH).
- The method is based on cases for which genomic sequencing is available.
- This minimizes mis-classification bias relative to methods implementing calendar-based classification.
- Can be applied in settings where only a subset of cases are sequenced.

Methods

- Notation:
- S denotes variant subtype, with S=0 corresponding to being uninfected, denoting the previous variant, and s* denoting the emerging variant.
- V denotes vaccine status, with V=0 corresponding to being unvaccinated and $V \in \{1, 2, ..., J\}$ representing level of vaccination.
- **Objective**: Estimate VE against a variant s:

$$VE_{\nu}(s) = 1 - \frac{P(S = s | V = \nu)}{P(S = s | V = 0)} = 1 - RR_{\nu}(s, 0)$$

• VE can be expressed as an odds ratio when risk of infection is low:

$$VE_{\nu}(s) = 1 - \frac{P(S = s | V = \nu) / P(S = 0 | V = \nu)}{P(S = s | V = 0) / P(S = 0 | V = 0)} = 1 - \psi_{\nu}(s, 0)$$

• Now consider estimating VE against an emerging variant s* in a setting where reliable estimates of VE against a previous variant s_0 are available.

$$\psi_{\nu}(s^*, 0) = \frac{P(S = s^* | V = \nu) / P(S = 0 | V = \nu)}{P(S = s^* | V = 0) / P(S = 0 | V = 0)}$$

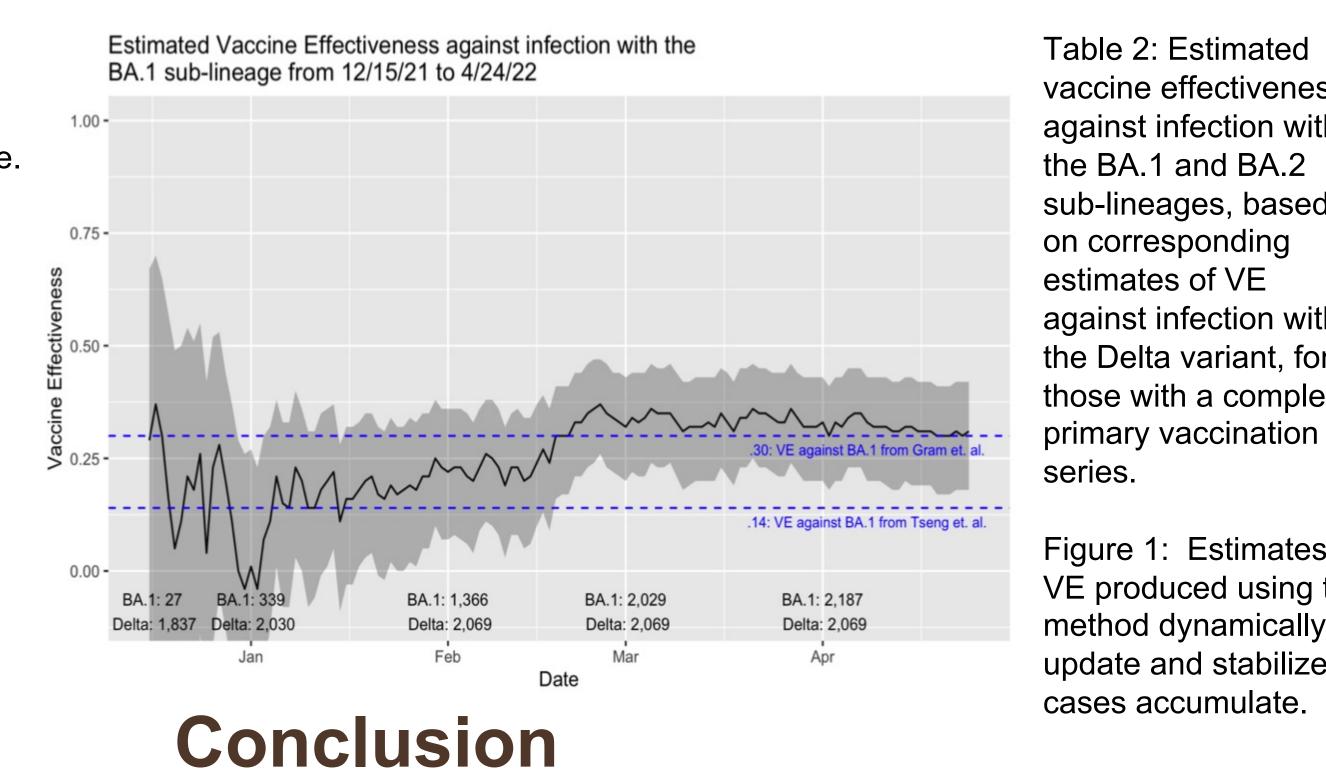
= $\frac{P(S = s^* | V = \nu) / P(S = s_0 | V = \nu)}{P(S = s^* | V = 0) / P(S = s_0 | V = \nu)} \times \frac{P(S = s_0 | V = \nu) / P(S = 0 | V = \nu)}{P(S = s_0 | V = 0)}$
= $\psi_{\nu}(s^*, s_0)\psi_{\nu}(s_0, 0)$

• Then, our estimator for $VE_v(s^*)$ is:

$$VE_{\nu}(s^*) = 1 - \psi_{\nu}(s^*, s_0)\psi_{\nu}(s_0, 0)$$
$$= 1 - \psi_{\nu}(s^*, s_0) \{1 - VE_{\nu}(s_0)\}$$

- Methodological Considerations:
- Estimation of $\psi_{\nu}(s^*, s_0)$ from a sample of cases with sequenced virus, where selection into the sequenced sample is potentially nonrandom relative to the population of interest.
- Uncertainty estimation from two sources: (1) uncertainty in estimate of VE against previous variant s_0 (2) uncertainty associated with $\psi_{\nu}(s^*, s_0)$.
- Potential differences in populations used to derive estimates of VE against previous variant and our study population.
- Potential for differential transmissibility of emerging variant relative to the previous variant.

Vaccination Status	Adjusted BA.1 OR (95% CI)	Adjusted BA.2 OR (95% CI)	
Unvaccinated	-	-	
One Dose of		5.13 (3.49, 7.58)	
Two-Dose Series	3.77 (2.72, 5.27)		
Completed	1.90 (1.64, 2.20)	1.24 (1.02, 1.51)	
Primary Series	1.50 (1.04, 2.20)		


Table 1: Estimates of $\psi_{\nu}(s^*, s_0)$ for the Delta variant compared to each of the BA.1 and BA.2 variants, produced using weighted logistic regression.

Footnote to Table 2 (top of 3rd column):

³ Investigated Moderna and Pfizer vaccines separately, estimates shown are averages. ⁴ > 120 days after completion of primary vaccination series, among individuals ages 12-59 years. Approximately 75% of samples

Results

	Location	Study Type	<pre># infections; # no infection</pre>	Primary Series VE, Delta (VE _i)	Primary Series VE, BA.1 (VE_i^*)	P
, s ₀	California ¹ (Tartof <i>and others</i>)	cohort, Delta-dominant	197,535; 2,919,754	49 (46, 51)	3 (-13, 17)	
ed	California ² (Bruxvoort <i>and others</i> , 2021)	case control, sequenced	2,027; 10,135	87 (84, 89)	75 (69, 81)	
÷u	California (Tseng and others, 2022)	case-control, S-Gene Target Failure	26,683; 109,662	64 (60, 67)	31 (18, 42)	
	Minnesota ³ (Puranik <i>and others</i> , 2021)	case control Delta-dominant	25,869; 25,869	59 (36, 75)	20 (-28, 52)	
	Norway (Seppälä and others, 2021)	cohort, sequenced	5,430 4,199,429	65 (61, 68)	33 (21, 44)	
	Denmark ⁴ (Gram <i>and others</i> , 2022)	cohort; Delta-dominant and sequenced	34,636 842,397	65 (64, 66)	33 (23, 43)	

- We can produce estimates of VE that stabilize quickly and are comparable in magnitude to results produced by other methods.
- We were able to detect reduced VE against each of the BA.1 and BA.2 sub-lineages relative to the Delta variant.
- Our estimates have large associated error, this could be reduced by sequencing a higher proportion of cases or implementing the method in a larger health department with access to more case records.

Limitations:

- The precision of our estimate partially depends on the precision of estimates reported in the literature.
- We have assumed that estimates of VE against the previous variant are transportable to the Rhode Island population.
- Sequencing delays can be substantial.

Primary Series VE, BA.2 (VE_i^*) 37 (23, 48) 84 (79, 88) 55 (44, 64) 47 (15, 69) 56 (46, 65) 56 (47, 64)

vaccine effectiveness against infection with sub-lineages, based against infection with the Delta variant, for those with a complete

Figure 1: Estimates of VE produced using this method dynamically update and stabilize as

¹ Estimated effectiveness ≥ 7 months days after completion of primary vaccination series, Pfizer vaccine only.

² Moderna vaccine only

were sequenced during the Delta-dominant portion of the study period.