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Overview
We compare efficiency gains using machine learning 
(ML) for the adjustment model relative to linear 
regression in randomized trials under missing data 
and model misspecification. The potential of these 
methods is demonstrated using a simulation study 
and an application to a cluster randomized trial. We 
then suggest guidelines for using ML adjustment for 
bias correction and precision optimization.

Background
• Baseline covariate adjustment can improve the precision of treatment effect 

estimates in randomized trials. 
• The correct adjustment model is usually unknown.
• With complete outcome data, linear regression adjustment improves 

precision even if it is not the right model.
• With incomplete data, covariate adjustment using an incorrect model can 

induce bias. We investigate whether:
(i)  ML adjustment results in an approximately correct model and thus 

maximizes precision under complete data.
(ii) with incomplete data, ML adjustment alleviates bias attributable to 

model misspecification.

Simulation methods
• Simulations mimic randomized trials with sample sizes between 500 and 

2000.
• Estimate the effect of a treatment, 𝐴𝐴 on the outcome, 𝑌𝑌 using baseline 

covariates, 𝑋𝑋.
• We assume intention-to-treat (ITT) analyses and estimate 

𝐴𝐴𝑇𝑇𝑇𝑇 = 𝑇𝑇 𝑌𝑌1 − 𝑌𝑌0 .

Results
• Gains in efficiency using ML adjustment relative to MLR under complete 

data and misspecification of the adjustment model are directly 
proportional to the proportion variance explained. 

• Performance improves with increasing n (Table 2).

Conclusion
• Covariate adjustment is almost always recommended in RCTs.
• With complete data, ML adjustment can improve efficiency relative to simpler 

models, e.g., MLR.
• Need to exercise causation under small sample sizes.
• With missing outcome data, ML can potentially reduce bias relative to 

misspecified.
• Strength: Basis for using ML covariate adjustment to enhance precision. 
• This ensures that vain interventions are ruled out while ensuring efficient 

treatments are available in time to handle public health emergencies.
• Limitation: Relied on Missing At Random (MAR) assumption.
• Extensions of these methods could evaluate cross-fitted ML with non-

continuous primary outcomes.
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Estimators

Table 1: Data generating mechanism and definition of notations used to define 
the correct outcome model.

Notation Definition
𝒁𝒁 = 𝒁𝒁𝟏𝟏,⋯ ,𝒁𝒁𝟒𝟒 𝑻𝑻 p× 1 vector of true outcome-generating variables 

𝑍𝑍𝑖𝑖 ∼ 𝑁𝑁(0, 1).

𝑿𝑿 = 𝑿𝑿𝟏𝟏,⋯ ,𝑿𝑿𝟒𝟒 𝑻𝑻 The p × 1 vector of actual observed baseline covariates derived 
from 𝒁𝒁 and which are used in adjustment models.

𝑨𝑨 = 𝟎𝟎,𝟏𝟏 A binary treatment variable denoting control and treatment arms, 
respectively, and assume 𝐴𝐴 ⫫ X.

𝒀𝒀𝒂𝒂=𝟎𝟎,𝟏𝟏 Potential outcomes under treatment and control status. Assume, 
𝑌𝑌𝑎𝑎 ⫫ A|X ⇒ P Ya X = P Ya A, X = P(Y|A = a, X)

𝑹𝑹 ∈ (𝟎𝟎,𝟏𝟏) Missingness indicator: 𝑅𝑅 = 1 when 𝑌𝑌
is observed. 𝑅𝑅 ∼ 𝐵𝐵𝐵𝐵𝐵𝐵( �𝜋𝜋) and �𝜋𝜋 is the probability of observing a 

unit 𝑖𝑖. Assume 𝑅𝑅 ⫫ 𝑌𝑌|𝑋𝑋.
𝒀𝒀 The continuous primary outcome; defined as 

𝑌𝑌𝑖𝑖 = 𝛽𝛽0 + 𝜃𝜃𝐴𝐴 + ∑𝑖𝑖=14 𝛽𝛽𝑍𝑍𝑖𝑖 + 𝜖𝜖𝑖𝑖 and 𝜖𝜖𝑖𝑖 ∼ 𝑁𝑁(0, 𝜎𝜎 ∈ 1, 45 .

(i) Multiple Linear Regression (MLR)
• Predict potential outcomes under each treatment as a linear 

combination of covariates. 
(ii) Bayesian Additive Regression Trees (BART)
• ‘sum of trees’ model + regularization prior. 
(iii) Random Forests (RF)
• Reduce correlation and tree variance by introducing split 

randomness. 
• Based on bagging.
(iv) eXtreme Gradient Boosted Tree Ensemble (XGBoost) 
• Weak learners are boosted to enhance their performance.
• Regularized objective function to reduce overfitting.
(v) Super Learner (SL)
• Weighted linear combination of base learners minimizing the cross-

validated risk.
• RF, MLR, and XGBoost used as base learners.
• All modeling in R using `tidymodels` package in R.
Note: Performance evaluations were based on relative % increase in 
efficiency defined as 100*(ratio of variances - 1), standard errors, and 
bias.

• For missing data, we explored whether ML enhances efficiency while 
correcting bias attributable to model misspecification.

• 87% gain in precision using BART relative to LM under high variance 
explained and up to 3% gain under low variance explained even under 
adjustment model misspecification (Table 3).

• Figure 1: Bias using RF,  
XGBoost, and SL 
remained high, 
especially under low 
sample size and 
proportion variance in Y
explained the lines are 
SE of the effect 
estimates.

• Improvements in 
performance with large 
n.

• BART enhanced 
efficiency and kept bias 
low, unlike MLR.

Table 2: Relative percentage increase in efficiency comparing ML 
to MLR adjustment by sample size and proportion variance 
explained under complete data. 

n = 500 n = 2000
Low R2 High R2 Low R2 High R2

Estimator RE RE RE RE
Correct model 1.01% 99.65% 9.47% 99.64%

BART 1.38% 85.28% 7.03% 90.35%
SL -18.85% 70.91% 1.86% 89.51%

XGBoost -4.23% 65.19% 3.63% 87.83%
RF -57.36% 53.50% 1.55% 81.02%

• Models for E(Y|A, Z) are often only rough approximations. 
• We misspecify our adjustment model by using E(Y|A, X).  
• Impacts inference when 𝑃𝑃 𝑋𝑋 𝐴𝐴 = 1 ≠ 𝑃𝑃(𝑋𝑋|𝐴𝐴 = 0). 
• Correct adjustment model terms given X would be: 

log 𝑋𝑋1 ,𝑋𝑋2,𝑋𝑋12𝑋𝑋2, 1
log 𝑋𝑋2

, 𝑋𝑋3
log 𝑋𝑋1

,√𝑋𝑋4 , and 𝐴𝐴
Table 3: Relative percentage increase in efficiency comparing ML to MLR 
adjustment by sample size and proportion variance explained under missing 
data. 

n = 258 n = 1003
Low R2 High R2 Low R2 High R2

Estimator RE RE RE RE
Correct model 9.50% 99.55% 8.07% 99.55%
BART -0.86% 74.63% 3.12% 86.96%
SL -9.66% 47.46% -2.29% 78.01%
XGBoost -27.46% 44.09% -0.70% 75.62%
RF -111.15% -2.32% -14.88% 64.02%
RE: Relative efficiency; R2: Proportion variance explained

RE: Relative efficiency; R2: Proportion variance explained.
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