

Calibrating Probabilities of Transition in Use of Combustible **Cigarettes and E-Cigarettes with Multi-state Modeling**

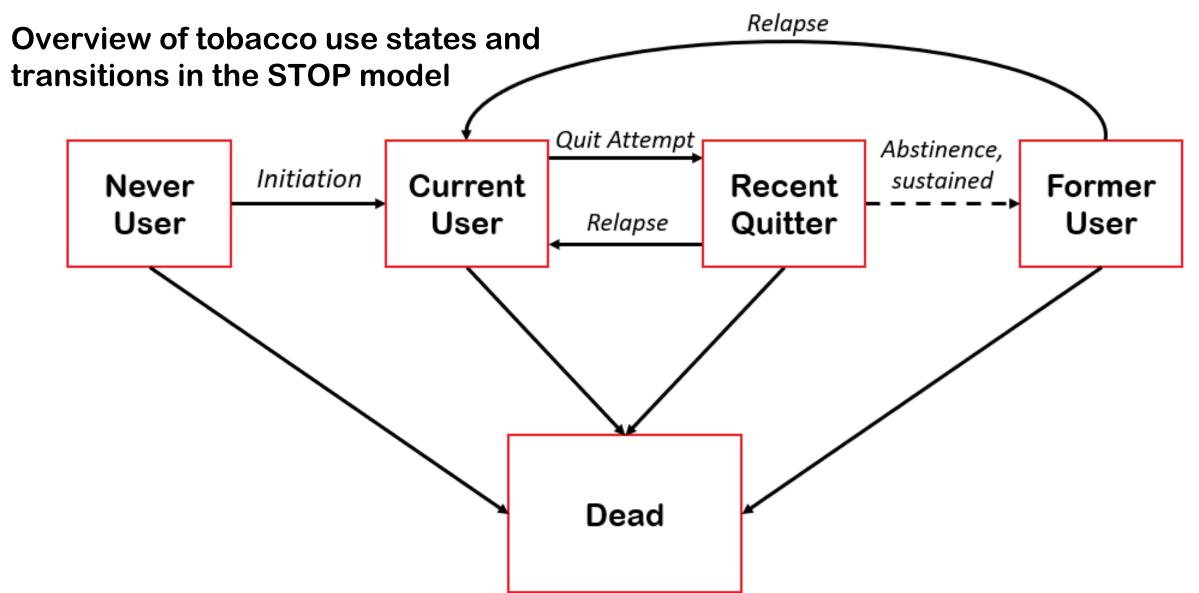
Breanna Richards¹; Thesis Advisor: Stavroula Chrysanthopoulou¹ ¹Brown University School of Public Health Department of Biostatistics, Providence, RI,

Overview

We utilized data from a nationally representative longitudinal study in the estimation of **behavioral** transitions and inference for tobacco use in the U.S. These estimates were then used to validate a microsimulation model aimed at accurately projecting downstream prevalence of product use.

Background and Study Design

- **Tobacco use** is the leading cause of preventable disease, disability, and death in the United States
- The U.S. witnessed a dramatic increase in the use of electronic nicotine delivery systems (ENDS)/e-cigarettes in the last decade. Most notably, the year 2019 observed a boom in the use of JUUL among high-school-aged youth.
- **Simulation modeling** provides a useful approach to addressing and understanding how traditional cigarettes and e-cigarettes interact and affect the prevalence of tobacco use within our ecosystem.
- We fit a Markov multi-state model (MMSM) for participants in Waves 1-5 of the Population Assessment of Tobacco and Health (PATH) longitudinal study in order to inform and update the **Simulation of Tobacco and Nicotine Outcomes and Policy** (STOP) model, a microsimulation model used to project effects of tobacco use and cessation over time, including the key behavior of relapse.
- Results from the MMSM were supplemented with results from **mixed-effects regression** which allowed for the quantitative inference of the effect of covariates on use behaviors.


Data

									Transition probabilities are computed from these intensities as $P(t) = \exp(Q(t))$.		
ID	WAVE	SEX	AGE	RACE	EDUCATION	RELAPSE	WEIGHT	USE STATE	Given starting population estimates, these probabilities empower the STOP model to	o proje	
P00004	1	Male	18-24 years old	White Only	Some college	0	7073.69	NSFE	prevalence of tobacco use into the future. These estimates are then compared again empirical PATH data for accuracy and goodness-of-fit.	ารt	
200004	2	Male	18-24 years old	White Only	Some college	1	7073.69	NSCE	STOP Model Projected Prevalences Empirical PATH Prevalences		
	3	Fomolo	45-64	Other	Advanced	0	3036.67	FSNE	15-17 18-24 25-44 45-64 65+ 15-17 18-24 25-44 45	64 6	
P00005	3	Female	years old		Degree	0	5050.07	FONE	Model 2.8% 19.0% 24.6% 20.0% 6.7% 2015 2.8% 19.0% 24.7% 20 Start Start 2015 2.8% 19.0% 24.7% 20	0.0% 7.	
			,							9.9% 8	
									Year 2 2.6% 15.8% 23.3% 20.8% 8.2% 2017 1.7% 15.5% 24.5% 20).1% 8	
									Year 3 3.3% 15.4% 23.4% 20.9% 8.4%	-	
P23569	4	Female	12-14 years old	Black Only	High school or less	0	1522.36	NSNE		0.3% 8	
									Year 5 5.5% 14.2% 24.0% 21.0% 8.3%		
P23569	4.5	Female	15-17 years old	Black Only	High school or less	0	1522.36	NSNE	We fit mixed-effects logistic regression models to draw inference on the effects of our on tobacco use:	r covari	
P23569	5	Female	15-17 years old	Black Only	High school or less	0	1522.36	NSCE	$logit(E[Current Tobacco Use_i X_i]) = \beta_{0i} + \beta_1 Wave + \beta_2 Sex + \beta_3 Age + \beta_2 Sex + \beta_3 Age + \beta_2 Sex + \beta_3 Age + \beta_4 Sex$	3 ₄ Race	

PATH is an on-going study aimed at providing an understanding of tobacco use patterns and related health effects in the U.S. Participants are followed up with over time (every one-two years) and their subsequent responses on various aspects of tobacco use are recorded. We synthesized data for nine cigarette smoking and e-cigarette use states (current/former/never use of each), and associated information on participant sex, age, race, education, and history of relapse. Responses were weighted with Wave 5 longitudinal weights to account for potential biases.

Methods

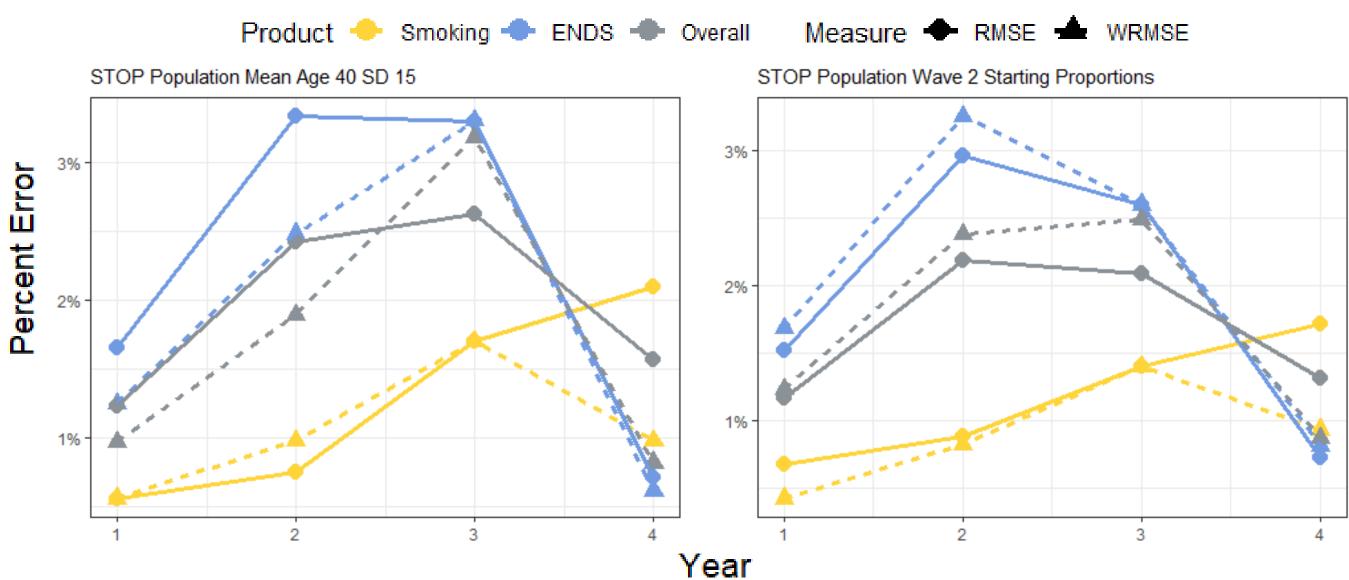
Transition probabilities derived from the Markov multi-state model are given by:

$$P_{ij}(s,t) = P(X_t = j | X_s = i) \text{ for } i, j \in S, s \le$$

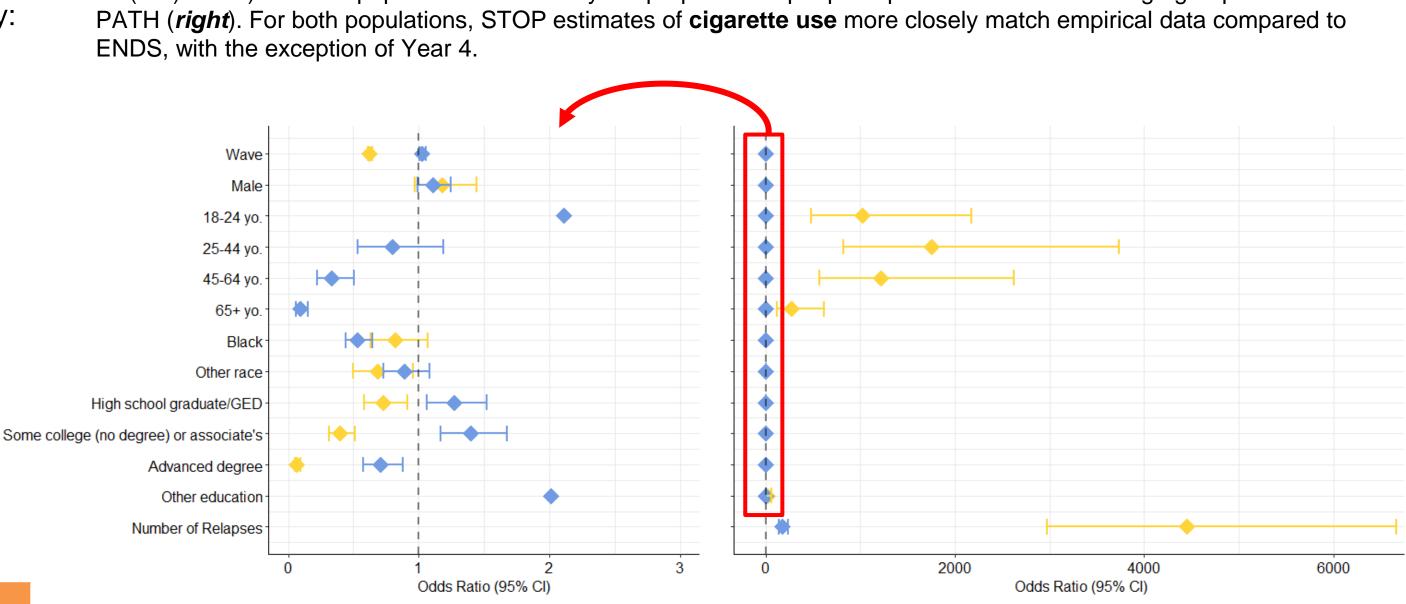
where S describes the state occupied at time t. Covariate effects on transition rates were estimated. The estimate of the hazard, λ_{ii} is given by:

$$\lambda_{ij}(t) = \lim_{\Delta t \to 0} \frac{P(X_{t+\Delta t} = j | X_t = i)}{\Delta t}$$

where λ_{ij} is the instantaneous risk of moving from state *i* to state *j*. The transition intensity matrix gives the instantaneous rate of transition from one state to another :

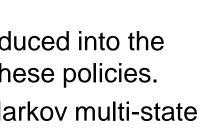

$$Q(t) = \begin{pmatrix} -\lambda_{11} & \cdots & -\lambda_{19} \\ -\lambda_{21} & \cdots & -\lambda_{29} \\ \vdots & \ddots & \vdots \\ -\lambda_{91} & \cdots & -\lambda_{99} \end{pmatrix}$$

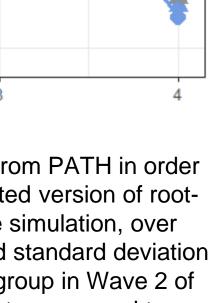
$$logit(E[Current Tobacco Use_i | X_i]) = \beta_{0i} + \beta_1 Wave + \beta_2 Sex + \beta_3 Age + \beta_4 Race + \beta_5 Education + \beta_6 Num. Relapses,$$


where β_{0i} is a random intercept for individual i in the study.

Current tobacco use is interchangeable with *current smoking* and *current ENDS* use of which we fit separate models for.

Results


Yearly STOP-projected prevalences of smoking and e-cigarette use were compared to empirical data from PATH in order to assess performance and goodness of fit. We tracked root-mean-squared-error (RMSE) and a weighted version of rootmean-squared error (WRMSE) based on the proportion of people represented within each group of the simulation, over time in model runs using a) an initial population drawn from a normal distribution with mean age 40 and standard deviation 15 (*left*) and b) an initial population informed by the proportion of people represented within each age group in Wave 2 of



We extract odds ratios corresponding to our covariates of interest related to separate outcomes of current smoking (yellow) and current ENDS use (blue) with a reference group of Female, 15-17 yo., White, in high school or lower, at a baseline time with 0 relapses observed during the duration of the study. Notably, the effect of age for those ≥25y takes on a reverse effect depending on the tobacco product, further demonstrating the popularity of e-cigarettes in younger populations as opposed to older. ENDS are also highly prevalent among high-school graduate/early college aged individuals as opposed to cigarettes. Lastly, assuming a linear effect of time, while cigarettes have become less popular over time, ENDS have become slightly more popular over time, though this positive correlation is not significant.

- Youth tobacco use was generally more erratic than that of adults with these groups taking particular interest in **ENDS/e-cigarettes** over traditional cigarettes.
- Root-mean-squared error (RMSE) and weighted root-mean-squared-error (WRMSE) for STOP-projected versus PATH empirical prevalence for smoking and ENDS were <4% for all four years of simulation. We observed especially great performance on estimates for Year 4/2019 (our primary target of interest due to the boom in JUUL use that occurred during this time).
- With confidence in our results, tax policies intended to influence tobacco use can be introduced into the STOP model, thereby providing decision makers with estimates of the potential impact of these policies.
- Mixed effects models revealed covariate relationships consistent with what was found in Markov multi-state modeling.

