A Method for Vaccine Effectiveness Surveillance with Application to the BA.1 and BA.2 sub-lineages of the Omicron Variant

Taylor Fortnam1, Laura Chambers1,2, Alyssa Bilinski1, Ewa King2, Ellen Amore2, Lisa Gargano2, James McDonald2, Philip A. Chan1,2, Richard Huard2, Joseph W. Hogan1

1Brown University, RI, 2Rhode Island Department of Health

Overview
We propose a surveillance method for updating estimates of vaccine effectiveness (VE) against infection with an emerging COVID-19 variant using dynamic case-control sampling. The method uses routinely-collected genomic surveillance data and leverages published VE estimates against a previous variant to produce a stable estimate of VE without some of the limitations by other designs.

Background
• New COVID-19 variants arise frequently with different viral properties that can impact the effectiveness of existing vaccines.
• Public health officials must rapidly assess VE against new variants so that they can adjust mitigation measures.
• In vitro estimates of VE can be produced quickly but don’t map directly to specific health outcomes.
• Obtaining reliable estimates of VE in vivo often involves conducting a prospective cohort or test-negative case-control study, both of which require large sample sizes and substantial time for cases to accumulate.
• Genomic sequencing is costly and typically only available for a subsample of positive cases.

Data
• SARS-CoV-2 positive specimens linked with vaccination registry.
• Associated demographic information for cases (age, sex, race, congregate care status, and zip code based community risk classification).
• Only utilize first diagnosed infections in analysis.
• Data are collected and provided by the Rhode Island Department of Health (RIDOH).
• The method is based on cases for which genomic sequencing is available.
• This minimizes mis-classification bias relative to methods implementing calendar-based classification.
• Can be applied in settings where only a subset of cases are sequenced.

Methods
• Notation:
 - S denotes variant subtype, with S=0 corresponding to being uninfected, S1 denoting the previous variant, and S* denoting the emerging variant.
 - V denotes vaccine status, with V=0 corresponding to being unvaccinated and V=1, 2, . . . , J representing level of vaccination.
• Objective: Estimate VE against a variant s:
 \[\text{VE}(s) = 1 - \frac{P(S = s | V = 0)}{P(S = 0 | V = 0)} \]
 - VE can be expressed as an odds ratio when risk of infection is low:
 \[\text{VE}(s) = 1 - \frac{P(S = s | V = 0)}{P(S = 0 | V = 0)} = 1 - \psi(s, 0) \]
• Now consider estimating VE against an emerging variant s* in a setting where reliable estimates of VE against a previous variant s0 are available.
 \[\psi(s, 0) = \frac{P(s* | V = 0)}{P(s0 | V = 0)} \]
• Then, our estimator for VE(s*) is:
 \[\text{VE}(s*) = 1 - \psi(s*, 0) \]

Methodological Considerations:
• Estimation of \(\psi(s*, 0) \) from a sample of cases with sequenced virus, where selection into the sequenced sample is potentially nonrandom relative to the population of interest.
• Uncertainty estimation from two sources: (1) uncertainty in estimate of VE against previous variant \(s_0 \) uncertainty associated with \(\psi(s*, 0) \)
• Potential differences in populations used to derive estimates of VE against previous variant and our study population.
• Potential for differential transmissibility of emerging variant relative to the previous variant.

Results

<table>
<thead>
<tr>
<th>Location</th>
<th>Study Type</th>
<th>Primary Study VE, BA.1 (95% CI)</th>
<th>Primary Study VE, BA.2 (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>California</td>
<td>Cohen, Delta-dominant</td>
<td>107.55% (2.93), 79.75%</td>
<td>98.48% (3.13), 77.48%</td>
</tr>
<tr>
<td>California</td>
<td>DNA sequencing</td>
<td>107.55% (2.93), 79.75%</td>
<td>98.48% (3.13), 77.48%</td>
</tr>
<tr>
<td>California</td>
<td>SARS-CoV-2</td>
<td>107.55% (2.93), 79.75%</td>
<td>98.48% (3.13), 77.48%</td>
</tr>
<tr>
<td>California</td>
<td>SARS-CoV-2</td>
<td>107.55% (2.93), 79.75%</td>
<td>98.48% (3.13), 77.48%</td>
</tr>
<tr>
<td>Minnesota</td>
<td>DNA sequencing</td>
<td>58.15% (3.58), 72.48%</td>
<td>62.02% (3.96), 77.12%</td>
</tr>
<tr>
<td>Minnesota</td>
<td>SARS-CoV-2</td>
<td>58.15% (3.58), 72.48%</td>
<td>62.02% (3.96), 77.12%</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>DNA sequencing</td>
<td>65.05% (4.15), 80.56%</td>
<td>69.55% (4.67), 84.22%</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>SARS-CoV-2</td>
<td>65.05% (4.15), 80.56%</td>
<td>69.55% (4.67), 84.22%</td>
</tr>
</tbody>
</table>

Conclusion
• We can produce estimates of VE that stabilize quickly and are comparable in magnitude to results produced by other methods.
• We were able to detect reduced VE against each of the BA.1 and BA.2 sub-lineages relative to the Delta variant.
• Our estimates have large associated error, this could be reduced by sequencing a higher proportion of cases or implementing the method in a larger health department with access to more case records.

Figure 1: Estimates of VE produced using this method dynamically update and stabilize as cases accumulate.