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Longitudinal Principal Manifold 
Estimation

Overview
We developed longitudinal Principal Manifold Estimation 
to obtain smooth, longitudinally meaningful estimates of 
manifolds over time. We used this method to reach 
smooth estimates of manifolds underlying subcortical 
structures in individuals with Alzheimer’s disease. 

Background
• Alzheimer’s disease (AD) is a progressive neurodegenerative 

condition that causes atrophy in certain structures in the brain.
• Longitudinal magnetic resonance imaging (MRI) data is used to 

model trajectories of change in brain regions of interest.
• Image segmentation approaches to extract subcortical structures 

from neuroimages for analysis are applied to individual scans 
independently, resulting in variability in the shape and volume 
estimates of these structures.

• We developed a manifold learning-based approach to obtaining 
smooth estimates of subcortical surfaces to mitigate the effects of 
spurious variability on biomarker estimates.

• Longitudinal principal manifold estimation uses smoothing splines 
to estimate a smooth surface that minimizes the mean squared 
distance plus within-time point and between-time point roughness 
penalties :

.

The LPME algorithm consists of four steps:
1. Sample Size Reduction: 𝑘-means clustering is used to represent 

the full dataset as a mixture of 𝑘 components, with 𝑘 ≪ 𝑁.
2. Initialization: Principal manifold estimation (PME) algorithm is 

applied to data at the first time point to obtain parameterizations 
for all mixture components. These initial parameterizations are 
used to fit PME estimates independently at each individual time 
point 𝑡, yielding function coefficients 𝒔!, 𝜶!.

3. Fitting: For given smoothing parameter 𝛾, a smoothing spline is 
used to smooth over the PME model coefficients, yielding time-
varying coefficients 𝒔" 𝑡 , 𝜶" 𝑡 .

4. Tuning: Leave-one-out cross-validation is used to select the 
value of 𝛾 that minimizes the empirical Mean Squared Distance:

Longitudinal Principal Manifold Estimation

LPME Algorithm Steps

• We used simulated datasets to compare the LPME algorithm to the 
PME and Principal Curve/Surface algorithms fit independently at 
each time point.

• We use PME, LPME, and Principal Curves/Surfaces to recover the 
true values of the embedded manifold used to generate the data with 
varying levels of noise introduced between time points.

• We measure performance using the mean squared distance between 
the estimated function values and the true values:
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• Simulations used eight manifolds with differing intrinsic and 
embedded dimensions to generate data.

Simulations

Simulation Results

MSD comparison to true values, Median (IQR). The lowest algorithm-
specific median (IQR) are highlighted in bold. LPME shows the smallest 
deviations from the true values in most simulation cases.

Simulation 
Case

Data LPME PME PC/PS

1 0.146 (0.233) 0.074 (0.122) 0.131 (0.258) 0.118 (0.206)
2 0.467 (0.665) 0.248 (0.516) 0.516 (0.750) 0.564 (0.419)
3 0.291 (0.601) 0.239 (0.564) 0.317 (0.640) 0.264 (0.584)
4 4.26 (21.2) 3.29 (13.0) 4.23 (21.1) 4.22 (21.2)
5 0.895 (1.33) 0.584 (1.08) 0.894 (1.36) 0.821 (1.22)
6 0.284 (1.06) 0.273 (0.891) 0.316 (1.04) 0.557 (0.387)
7 0.145 (0.552) 2.96 (4.65) 6.92 (1.17) 1.58 (0.514)
8 0.110 (0.325) 0.074 (0.208) 0.115 (0.331) 0.172 (0.234)

ADNI Results
• The PME and LPME algorithms were fit to the surfaces of the thalami 

and hippocampi of participants in the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI).

• Cartesian coordinates were augmented with spherical coordinates to 
enable fitting to self-intersecting structures.

• PME and LPME capture the shape of the thalamus (left) well, with 
LPME yielding smaller variations between estimates across time points.

• Both PME and LPME are unable to adequately capture the irregular 
shape of the hippocampus (right).

Conclusion
• LPME demonstrates performance improvements over naïve application 

of alternative approaches in simulated datasets using several 
underlying manifolds.

• In applications, LPME is capable of fitting closely to regularly shaped 
subcortical structures but struggles to accurately estimate irregularly 
shaped manifolds.

• Work to approximate volumes of subcortical structures from LPME and 
PME estimates is ongoing.

• Further development of the data augmentation approach used to 
enable fitting to self-intersecting structures may yield improved results 
for irregular manifolds. 
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