

Associations of plasma p-tau181 with hippocampal subfield integrity and cognition in older adults

Adea Rich¹, Hwamee Oh^{1,2}
¹Brown University, RI, ²Department of Psychiatry and Human Behavior

Overview

Plasma biomarkers for Alzheimer's disease (AD) may offer broader clinical utility. We evaluate the diagnostic capabilities of plasma p-tau181 by examining its association with AD pathology and cognition.

Background

- Plasma biomarkers show promise as non-invasive, cost-effective, and accessible diagnostic markers of AD
- Plasma p-tau181 is an increasingly established diagnostic marker for AD, but its relationship to AD pathology and cognition remains unclear
- A hallmark of AD is episodic memory impairment, underscored by atrophy in the hippocampal (HC) formation, which comprises subfields differentially affected by various disorders
- We examine the relationship between p-tau181, HC subfield integrity, and cognition to better understand the diagnostic capabilities of plasma biomarkers

Methods

Sample: 213 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database with:

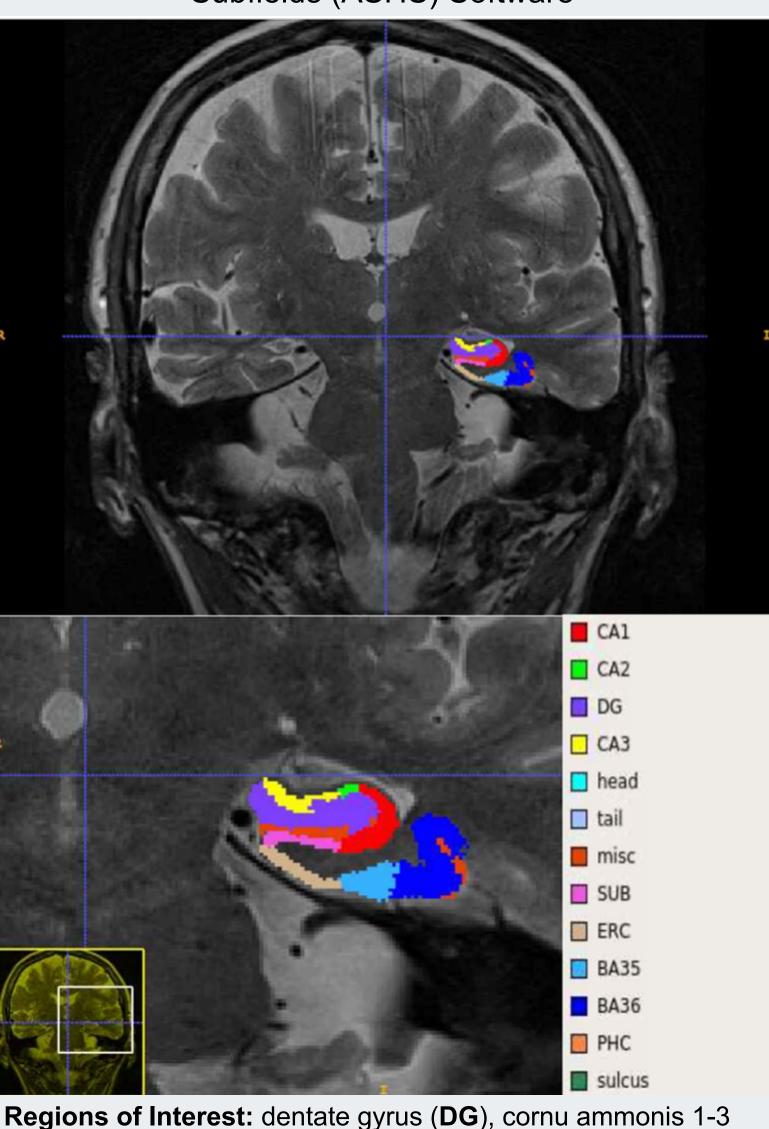

- ✓ Measurements of plasma p-tau181 (pg/mL)
- √ High resolution T2-weighted MRI scans
- ✓ Memory and executive functioning composite scores

Table 1: Demographic and clinical characteristics of subjects

	CN (N=57)	MCI (N=109)	AD (N=47)
Female	26 (46 %)	46 (42 %)	26 (55 %)
Age	74(7.4)	73(7.8)	74(8.5)
Education	17(2.6)	17(2.7)	16(2.4)
MMSE	29(1.3)	28(2.2)	21(4.5)
ADNI-MEM	1.2(0.69)	0.53(0.84)	-1.1(0.70)
ADNI-EF	0.98(0.85)	0.48(0.95)	-0.99(1.1)
P-tau 181	15(8.8)	17(11)	28(17)

Mean (SD); n (%). CN, Cognitively normal; MCI, Mild cognitive impairment; MMSE, Mini Mental State Examination; ADNI-MEM, Memory composite score; ADNI-EF, Executive Functioning composite score

MRI Processing: HC subfield volume was obtained using the Automated Segmentation of Hippocampal Subfields (ASHS) Software

Statistical Analysis:

✓ Multiple linear regression assessed the relationship between plasma p-tau181 and HC subfield volume

(CA1-3), entorhinal cortex (ERC), subiculum (SUB)

✓ Bootstrapped mediation analysis examined HC subfield integrity as a mediator of the relationship between ptau181 and cognition

Results

Figure 1: Association between plasma p-tau181 concentration and HC subfield volume across diagnostic groups, adjusted for age and sex

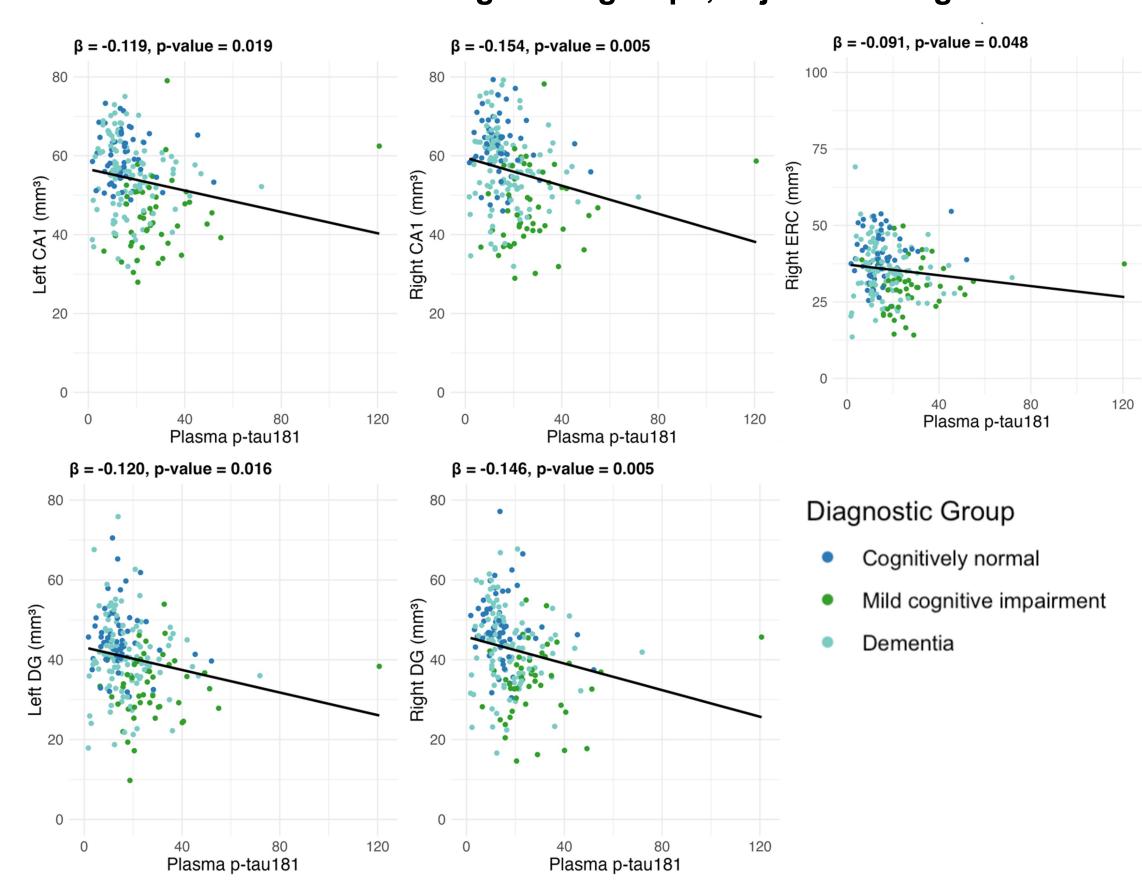


Table 2: Association between plasma p-tau181 and cognition mediated by HC subfield integrity, adjusted for age, sex, and years of education

a) Memory Composite Score

a HC Subfield Volume b							
Plasma		Memory Composite		posite			
p-tau181		C'	Score				
HC Subfield	a	b	*ab	c'			
Volume (mm³)	Action Path	Theory Path	Indirect Effect	Direct Effect			
Left CA1	-0.12	0.06	-0.08	-0.02			
	[-0.22, -0.02]	[0.04, 0.07]	[-0.15, -0.02]	[-0.03, -0.01]			
Right CA1	-0.16	0.05	-0.09	-0.02			
	[-0.26, -0.05]	[0.04, 0.06]	[-0.15, -0.04]	[-0.03, -0.01]			
Left DG	-0.12	0.05	-0.07	-0.02			
	[-0.22, -0.02]	[0.04, 0.06]	[-0.12, -0.03]	[-0.03, -0.01]			
Right DG	-0.15	0.05	-0.08	-0.02			
	[-0.25, -0.04]	[0.03, 0.06]	[-0.14, -0.04]	[-0.03, -0.01]			
Right ERC	-0.10	0.04	-0.05	-0.03			
	[-0.19, -0.01]	[0.03, 0.06]	[-0.09, -0.01]	[-0.04, -0.01]			

b) Executive Functioning Score

*Completely standardized coefficient (LLCI, ULCI)

a HC Subfield Volume b							
	asma au181	С'	Executioning				
HC Subfield	a	b	*ab	c'			
Volume (mm³)	Action Path	Theory Path	Indirect Effect	Direct Effect			
Left CA1	-0.12	0.04	-0.06	-0.03			
	[-0.22, -0.02]	[0.03, 0.06]	[-0.11, -0.02]	[-0.04, -0.02]			
Right CA1	-0.16	0.03	-0.06	-0.03			
	[-0.26, -0.05]	[0.02, 0.05]	[-0.12, -0.02]	[-0.04, -0.02]			
Left DG	-0.12	0.04	-0.05	-0.03			
	[-0.22, -0.03]	[0.02, 0.05]	[-0.09, -0.02]	[-0.04, -0.02]			
Right DG	-0.15	0.03	-0.05	-0.03			
	[-0.25, -0.04]	[0.02, 0.05]	[-0.01, -0.02]	[-0.04, -0.02]			
Right ERC *Completely standardized coefficie	-0.01	0.03	-0.03	-0.03			
	[-0.19, -0.01]	[0.01, 0.05]	[-0.07, -0.01]	[-0.04, -0.02]			

Conclusion

- Across diagnostic groups, higher plasma p-tau181 levels were associated with lower HC subfield volume in the CA1, DG, and right ERC, suggesting that plasma p-tau181 may indicate underlying neurodegenerative changes in the brain
- Higher plasma p-tau181 levels associated with decreased cognition were partially mediated by decreased volume in the CA1, DG, and right ERC
- We found consistent associations of plasma p-tau181 with subfields vulnerable to atrophy in AD (CA1, ERC) and normal aging (DG)
- Despite being a well-established biomarker for distinguishing between AD and healthy individuals, plasma p-tau181 may also have the potential to predict agerelated cognitive decline, regardless of a dementia diagnosis

References

